Well-dominated graphs without cycles of lengths 4 and 5

Vadim E. Levit, David Tankus

פרסום מחקרי: פרסום בכתב עתמאמרביקורת עמיתים

9 ציטוטים ‏(Scopus)

תקציר

Let G be a graph. A set S of vertices in G dominates the graph if every vertex of G is either in S or a neighbor of a vertex in S. Finding a minimum cardinality set which dominates the graph is an NP-complete problem. The graph G is well-dominated if all its minimal dominating sets are of the same cardinality. The complexity status of recognizing well-dominated graphs is not known. We show that recognizing well-dominated graphs can be done polynomially for graphs without cycles of lengths 4 and 5, by proving that a graph belonging to this family is well-dominated if and only if it is well-covered. Assume that a weight function w is defined on the vertices of G. Then G is w-well-dominated if all its minimal dominating sets are of the same weight. We prove that the set of weight functions w such that G is w-well-dominated is a vector space, and denote that vector space by WWD(G). We show that WWD(G) is a subspace of WCW(G), the vector space of weight functions w such that G is w-well-covered. We provide a polynomial characterization of WWD(G) for the case that G does not contain cycles of lengths 4, 5, and 6.

שפה מקוריתאנגלית
עמודים (מ-עד)1793-1801
מספר עמודים9
כתב עתDiscrete Mathematics
כרך340
מספר גיליון8
מזהי עצם דיגיטלי (DOIs)
סטטוס פרסוםפורסם - 1 אוג׳ 2017

טביעת אצבע

להלן מוצגים תחומי המחקר של הפרסום 'Well-dominated graphs without cycles of lengths 4 and 5'. יחד הם יוצרים טביעת אצבע ייחודית.

פורמט ציטוט ביבליוגרפי