תקציר
A graph is well-covered if every maximal independent set has the same cardinality. The recognition problem of well-covered graphs is known to be co-NP-complete. Let w be a linear set function defined on the vertices of G. Then G is w-well-covered if all maximal independent sets of G are of the same weight. The set of weight functions w for which a graph is w-well-covered is a vector space. We prove that finding the vector space of weight functions under which an input graph is w-well-covered can be done in polynomial time, if the input graph contains neither C4 nor C5 nor C6 nor C7.
שפה מקורית | אנגלית |
---|---|
עמודים (מ-עד) | 354-359 |
מספר עמודים | 6 |
כתב עת | Discrete Applied Mathematics |
כרך | 159 |
מספר גיליון | 5 |
מזהי עצם דיגיטלי (DOIs) | |
סטטוס פרסום | פורסם - 6 מרץ 2011 |