Weighted well-covered claw-free graphs

Vadim E. Levit, David Tankus

פרסום מחקרי: פרסום בכתב עתמאמרביקורת עמיתים

10 ציטוטים ‏(Scopus)

תקציר

A graph G is well-covered if all its maximal independent sets are of the same cardinality. Assume that a weight function w is defined on its vertices. Then G is w-well-covered if all maximal independent sets are of the same weight. For every graph G, the set of weight functions w such that G is w-well-covered is a vector space. Given an input claw-free graph G, we present an O(m32n3) algorithm, whose input is a claw-free graph G, and output is the vector space of weight functions w, for which G is w-well-covered. A graph G is equimatchable if all its maximal matchings are of the same cardinality. Assume that a weight function w is defined on the edges of G. Then G is w-equimatchable if all its maximal matchings are of the same weight. For every graph G, the set of weight functions w such that G is w-equimatchable is a vector space. We present an O(m·n4+n5logn) algorithm, which receives an input graph G, and outputs the vector space of weight functions w such that G is w-equimatchable.

שפה מקוריתאנגלית
עמודים (מ-עד)99-106
מספר עמודים8
כתב עתDiscrete Mathematics
כרך338
מספר גיליון3
מזהי עצם דיגיטלי (DOIs)
סטטוס פרסוםפורסם - 6 מרץ 2015

טביעת אצבע

להלן מוצגים תחומי המחקר של הפרסום 'Weighted well-covered claw-free graphs'. יחד הם יוצרים טביעת אצבע ייחודית.

פורמט ציטוט ביבליוגרפי