Waiter-Client and Client-Waiter planarity, colorability and minor games

Dan Hefetz, Michael Krivelevich, Wei En Tan

פרסום מחקרי: פרסום בכתב עתמאמרביקורת עמיתים

9 ציטוטים ‏(Scopus)

תקציר

For a finite set X, a family of sets F ⊆ 2X and a positive integer q, we consider two types of two player, perfect information games with no chance moves. In each round of the (1:q) Waiter-Client game (X,F), the first player, called Waiter, offers the second player, called Client, q+1 elements of the board X which have not been offered previously. Client then chooses one of these elements which he claims and the remaining q elements are claimed by Waiter. Waiter wins this game if by the time every element of X has been claimed by some player, Client has claimed all elements of some A ∈ F; otherwise Client is the winner. Client-Waiter games are defined analogously, the main difference being that Client wins the game if he manages to claim all elements of some A ∈ F and Waiter wins otherwise. In this paper we study the Waiter-Client and Client-Waiter versions of the non-planarity, Kt-minor and non-k-colorability games. For each such game, we give a fairly precise estimate of the unique integer q at which the outcome of the game changes from Client's win to Waiter's win. We also discuss the relation between our results, random graphs, and the corresponding Maker-Breaker and Avoider-Enforcer games.

שפה מקוריתאנגלית
עמודים (מ-עד)1525-1536
מספר עמודים12
כתב עתDiscrete Mathematics
כרך339
מספר גיליון5
מזהי עצם דיגיטלי (DOIs)
סטטוס פרסוםפורסם - 6 מאי 2016
פורסם באופן חיצוניכן

טביעת אצבע

להלן מוצגים תחומי המחקר של הפרסום 'Waiter-Client and Client-Waiter planarity, colorability and minor games'. יחד הם יוצרים טביעת אצבע ייחודית.

פורמט ציטוט ביבליוגרפי