Voronoi Tessellations and the Shannon Entropy of the Pentagonal Tilings

Edward Bormashenko, Irina Legchenkova, Mark Frenkel, Nir Shvalb, Shraga Shoval

פרסום מחקרי: פרסום בכתב עתמאמרביקורת עמיתים

4 ציטוטים ‏(Scopus)

תקציר

We used the complete set of convex pentagons to enable filing the plane without any overlaps or gaps (including the Marjorie Rice tiles) as generators of Voronoi tessellations. Shannon entropy of the tessellations was calculated. Some of the basic mosaics are flexible and give rise to a diversity of Voronoi tessellations. The Shannon entropy of these tessellations varied in a broad range. Voronoi tessellation, emerging from the basic pentagonal tiling built from hexagons only, was revealed (the Shannon entropy of this tiling is zero). Decagons and hendecagon did not appear in the studied Voronoi diagrams. The most abundant Voronoi tessellations are built from three different kinds of polygons. The most widespread is the combination of pentagons, hexagons, and heptagons. The most abundant polygons are pentagons and hexagons. No Voronoi tiling built only of pentagons was registered. Flexible basic pentagonal mosaics give rise to a diversity of Voronoi tessellations, which are characterized by the same symmetry group. However, the coordination number of the vertices is variable. These Voronoi tessellations may be useful for the interpretation of the iso-symmetrical phase transitions.

שפה מקוריתאנגלית
מספר המאמר92
כתב עתEntropy
כרך25
מספר גיליון1
מזהי עצם דיגיטלי (DOIs)
סטטוס פרסוםפורסם - ינו׳ 2023

טביעת אצבע

להלן מוצגים תחומי המחקר של הפרסום 'Voronoi Tessellations and the Shannon Entropy of the Pentagonal Tilings'. יחד הם יוצרים טביעת אצבע ייחודית.

פורמט ציטוט ביבליוגרפי