Trajectory-Based Convergence Acceleration of Evolutionary Algorithms

פרסום מחקרי: פרק בספר / בדוח / בכנספרסום בספר כנסביקורת עמיתים

תקציר

Evolutionary algorithms are heuristic, nature-inspired search methods based on the concept of evolution and survival of the fittest. While they have proven to be effective across a variety of problems they are often inefficient as they do not use information generated during the search and could therefore require extensive computer resources to converge. To address this issue this paper proposes a new method for evolutionary convergence acceleration which is inspired by the method of successive-over-relation for the solution of linear equations sets. The main concept is to determine the direction in which the population centroid has shifted between successive generations, which suggests a favourable direction towards an optimum. The population of solutions is then propagated along that direction to accelerate its convergence. The proposed algorithm is flexible and can be applied to a variety of evolutionary algorithms. An extensive performance analysis based on representative test functions shows the effectiveness of the proposed algorithm.

שפה מקוריתאנגלית
כותר פרסום המארח27th International Computer Science and Engineering Conference 2023, ICSEC 2023
מוציא לאורInstitute of Electrical and Electronics Engineers Inc.
עמודים461-465
מספר עמודים5
מסת"ב (אלקטרוני)9798350342109
מזהי עצם דיגיטלי (DOIs)
סטטוס פרסוםפורסם - 2023
אירוע27th International Computer Science and Engineering Conference, ICSEC 2023 - Koh Samui , Surat Thani, תאילנד
משך הזמן: 13 ספט׳ 202315 ספט׳ 2023

סדרות פרסומים

שם27th International Computer Science and Engineering Conference 2023, ICSEC 2023

כנס

כנס27th International Computer Science and Engineering Conference, ICSEC 2023
מדינה/אזורתאילנד
עירKoh Samui , Surat Thani
תקופה13/09/2315/09/23

טביעת אצבע

להלן מוצגים תחומי המחקר של הפרסום 'Trajectory-Based Convergence Acceleration of Evolutionary Algorithms'. יחד הם יוצרים טביעת אצבע ייחודית.

פורמט ציטוט ביבליוגרפי