תקציר
One of the main problems in machine learning and statistical inference is selecting an appropriate model by which a set of data can be explained. A novel model selection criterion based on the uniform convergence of empirical processes combined with the results concerning the approximation ability of non-linear manifolds of functions is introduced. A coherent and robust framework for model selection was elucidated and a lower bound on the approximation error was established, giving a well specified sense for most functions of interest.
שפה מקורית | אנגלית |
---|---|
כותר פרסום המארח | Proceedings of the Annual ACM Conference on Computational Learning TheoryPages 57 - 671996 Proceedings of the 1996 9th Annual Conference on Computational Learning Theory28 June 1996through 1 July 1996 |
עמודים | 57-67 |
מספר עמודים | 11 |
מזהי עצם דיגיטלי (DOIs) | |
סטטוס פרסום | פורסם - 1996 |
פורסם באופן חיצוני | כן |
אירוע | Proceedings of the 1996 9th Annual Conference on Computational Learning Theory - Desenzano del Garda, Italy משך הזמן: 28 יוני 1996 → 1 יולי 1996 |
כנס
כנס | Proceedings of the 1996 9th Annual Conference on Computational Learning Theory |
---|---|
עיר | Desenzano del Garda, Italy |
תקופה | 28/06/96 → 1/07/96 |