Towards personalized nutritional treatment for malnutrition using machine learning-based screening tools

Orit Raphaeli, Pierre Singer

פרסום מחקרי: פרסום בכתב עתמאמר מערכת

13 ציטוטים ‏(Scopus)

תקציר

Early identification of patients at risk of malnutrition or who are malnourished is crucial in order to start a timely and adequate nutritional therapy. Yet, despite the presence of many nutrition screening tools for use in the hospital setting, there is no consensus regarding the best tool as well as inadequate adherence to screening practices which impairs the achievement of effective nutritional therapy. In recent years, artificial intelligence and machine learning methods have been widely used, across multiple medical domains, to aid clinical decision making and to improve quality and efficiency of care. Therefore, Yin and colleagues propose a machine learning based individualized decision support system aimed to identify and grade malnutrition in cancer patients by applying unsupervised and supervised machine learning methods on nationwide cohort. This approach, demonstrate the ability of machine learning methods to create tools to recognize malnutrition. The machine learning based screening serves as a first layer in a nutritional therapy workflow and provides improved support for decision making of health professionals to fit individualized nutritional therapy in at-risk patients.

שפה מקוריתאנגלית
עמודים (מ-עד)5249-5251
מספר עמודים3
כתב עתClinical Nutrition
כרך40
מספר גיליון10
מזהי עצם דיגיטלי (DOIs)
סטטוס פרסוםפורסם - אוק׳ 2021

טביעת אצבע

להלן מוצגים תחומי המחקר של הפרסום 'Towards personalized nutritional treatment for malnutrition using machine learning-based screening tools'. יחד הם יוצרים טביעת אצבע ייחודית.

פורמט ציטוט ביבליוגרפי