Tight Estimate of the Local Leakage Resilience of the Additive Secret-Sharing Scheme & Its Consequences

Hemanta K. Maji, Anat Paskin-Cherniavsky, Mingyuan Wang, Albert Yu, Hai H. Nguyen, Tom Suad, Xiuyu Ye

פרסום מחקרי: פרק בספר / בדוח / בכנספרסום בספר כנסביקורת עמיתים

2 ציטוטים ‏(Scopus)

תקציר

Innovative side-channel attacks have repeatedly exposed the secrets of cryptosystems. Benhamouda, Degwekar, Ishai, and Rabin (CRYPTO-2018) introduced local leakage resilience of secret-sharing schemes to study some of these vulnerabilities. In this framework, the objective is to characterize the unintended information revelation about the secret by obtaining independent leakage from each secret share. This work accurately quantifies the vulnerability of the additive secret-sharing scheme to local leakage attacks and its consequences for other secret-sharing schemes. Consider the additive secret-sharing scheme over a prime field among k parties, where the secret shares are stored in their natural binary representation, requiring λ bits - the security parameter. We prove that the reconstruction threshold k = ω(log λ) is necessary to protect against local physical-bit probing attacks, improving the previous ω(log λ/log log λ) lower bound. This result is a consequence of accurately determining the distinguishing advantage of the “parity-of-parity” physical-bit local leakage attack proposed by Maji, Nguyen, Paskin-Cherniavsky, Suad, and Wang (EUROCRYPT-2021). Our lower bound is optimal because the additive secret-sharing scheme is perfectly secure against any (k − 1)-bit (global) leakage and (statistically) secure against (arbitrary) one-bit local leakage attacks when k = ω(log λ). Any physical-bit local leakage attack extends to (1) physical-bit local leakage attacks on the Shamir secret-sharing scheme with adversarially-chosen evaluation places, and (2) local leakage attacks on the Massey secret-sharing scheme corresponding to any linear code. In particular, for Shamir's secret-sharing scheme, the reconstruction threshold k = ω(log λ) is necessary when the number of parties is n = O(λlog λ). Our analysis of the “parity-of-parity” attack's distinguishing advantage establishes it as the best-known local leakage attack in these scenarios. Our work employs Fourier-analytic techniques to analyze the “parity-of-parity” attack on the additive secret-sharing scheme. We accurately estimate an exponential sum that captures the vulnerability of this secret-sharing scheme to the parity-of-parity attack, a quantity that is also closely related to the “discrepancy” of the Irwin-Hall probability distribution.

שפה מקוריתאנגלית
כותר פרסום המארח3rd Conference on Information-Theoretic Cryptography, ITC 2022
עורכיםDana Dachman-Soled
מוציא לאורSchloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing
מסת"ב (אלקטרוני)9783959772389
מזהי עצם דיגיטלי (DOIs)
סטטוס פרסוםפורסם - 1 יולי 2022
אירוע3rd Conference on Information-Theoretic Cryptography, ITC 2022 - Cambridge, ארצות הברית
משך הזמן: 5 יולי 20227 יולי 2022

סדרות פרסומים

שםLeibniz International Proceedings in Informatics, LIPIcs
כרך230
ISSN (מודפס)1868-8969

כנס

כנס3rd Conference on Information-Theoretic Cryptography, ITC 2022
מדינה/אזורארצות הברית
עירCambridge
תקופה5/07/227/07/22

טביעת אצבע

להלן מוצגים תחומי המחקר של הפרסום 'Tight Estimate of the Local Leakage Resilience of the Additive Secret-Sharing Scheme & Its Consequences'. יחד הם יוצרים טביעת אצבע ייחודית.

פורמט ציטוט ביבליוגרפי