תקציר
Generalizing a well known theorem for finite matroids, we prove that for every (infinite) connected matroid M there is a unique tree T such that the nodes of T correspond to minors of M that are either 3-connected or circuits or cocircuits, and the edges of T correspond to certain nested 2-separations of M. These decompositions are invariant under duality.
שפה מקורית | אנגלית |
---|---|
עמודים (מ-עד) | 25-56 |
מספר עמודים | 32 |
כתב עת | Journal of Combinatorial Theory. Series B |
כרך | 116 |
מזהי עצם דיגיטלי (DOIs) | |
סטטוס פרסום | פורסם - ינו׳ 2016 |