TY - GEN
T1 - The sequential online chore division problem - definition and application
AU - Yedidsion, Harel
AU - Alkoby, Shani
AU - Stone, Peter
N1 - Publisher Copyright:
© 2020 International Foundation for Autonomous Agents and Multiagent Systems (IFAAMAS). All rights reserved.
PY - 2020
Y1 - 2020
N2 - This paper defines a novel formulation of chore division, called Sequential Online Chore Division (SOCD), in which participants arrive and depart online, while the chore is being performed. In SOCD, there exists some uncertainty both regarding the total number of participants and their arrival/departure times. Moreover, only one agent can perform the chore at any given moment, and switching the performer incurs a cost. This novel variant of chore division can model real world problems such as the autonomous vehicle convoy formation problem, which has significant social implications. Autonomous vehicles are said to form a convoy when vehicles headed in the same direction follow each other in close proximity. This behavior has been proven to save energy, due to the reduction in aerodynamic drag. Empirical evaluations estimate that a follower can save over 10% of its fuel consumption [1]. However, since the leader sees little or no such gains, choosing the leader of such a convoy raises issues of fairness, and efficiency. Solving these issues is challenging since vehicles can dynamically join and leave the convoy. To address this problem, we propose three mechanisms for fair chore division. The first mechanism is centralized and uses side payments while the other two are distributed and seek to balance the participants' loads. We show that the payment-transfer mechanism, which requires a centralized server, results in optimal fairness and efficiency. For the cases where a central server is not available, we show that the repeated-game mechanism produces allocations which are efficiently-optimal and fair in expectation. For the single-game case, we first prove that optimal fairness is impossible to guarantee. We then show that our proposed single-game mechanism, which offers minimal efficiency loss, achieves ex-ante proportionality.
AB - This paper defines a novel formulation of chore division, called Sequential Online Chore Division (SOCD), in which participants arrive and depart online, while the chore is being performed. In SOCD, there exists some uncertainty both regarding the total number of participants and their arrival/departure times. Moreover, only one agent can perform the chore at any given moment, and switching the performer incurs a cost. This novel variant of chore division can model real world problems such as the autonomous vehicle convoy formation problem, which has significant social implications. Autonomous vehicles are said to form a convoy when vehicles headed in the same direction follow each other in close proximity. This behavior has been proven to save energy, due to the reduction in aerodynamic drag. Empirical evaluations estimate that a follower can save over 10% of its fuel consumption [1]. However, since the leader sees little or no such gains, choosing the leader of such a convoy raises issues of fairness, and efficiency. Solving these issues is challenging since vehicles can dynamically join and leave the convoy. To address this problem, we propose three mechanisms for fair chore division. The first mechanism is centralized and uses side payments while the other two are distributed and seek to balance the participants' loads. We show that the payment-transfer mechanism, which requires a centralized server, results in optimal fairness and efficiency. For the cases where a central server is not available, we show that the repeated-game mechanism produces allocations which are efficiently-optimal and fair in expectation. For the single-game case, we first prove that optimal fairness is impossible to guarantee. We then show that our proposed single-game mechanism, which offers minimal efficiency loss, achieves ex-ante proportionality.
KW - Autonomous Vehicles
KW - Chore Division
KW - Convoy Formation
KW - Mechanism Design
KW - Multi Agent Coordination
KW - Platooning
UR - http://www.scopus.com/inward/record.url?scp=85096663720&partnerID=8YFLogxK
M3 - ???researchoutput.researchoutputtypes.contributiontobookanthology.conference???
AN - SCOPUS:85096663720
T3 - Proceedings of the International Joint Conference on Autonomous Agents and Multiagent Systems, AAMAS
SP - 2059
EP - 2061
BT - Proceedings of the 19th International Conference on Autonomous Agents and Multiagent Systems, AAMAS 2020
A2 - An, Bo
A2 - El Fallah Seghrouchni, Amal
A2 - Sukthankar, Gita
T2 - 19th International Conference on Autonomous Agents and Multiagent Systems, AAMAS 2020
Y2 - 9 May 2020 through 13 May 2020
ER -