TY - JOUR
T1 - The molecular chaperone Ydj1 is required for the p34CDC28-dependent phosphorylation of the cyclin Cln3 that signals its degradation
AU - Yaglom, Julia A.
AU - Goldberg, Alfred L.
AU - Finley, Daniel
AU - Sherman, Michael Y.
PY - 1996
Y1 - 1996
N2 - The G1 cyclin Cln3 of the yeast Saccharomyces cerevisiae is rapidly degraded by the ubiquitin-proteasome pathway. This process is triggered by p34CDC28-dependent phosphorylation of Cln3. Here we demonstrate that the molecular chaperone Ydj1, a DnaJ homolog, is required for this phosphorylation. In a ydj1 mutant at the nonpermissive temperature, both phosphorylation and degradation of Cln3 were deficient. No change was seen upon inactivation of Sis1, another DnaJ homolog. The phosphorylation defect in the ydj1 mutant was specific to Cln3, because no reduction in the phosphorylation of Cln2 or histone H1, which also requires p34CDC28, was observed. Ydj1 was required for Cln3 phosphorylation and degradation rather than for the proper folding of this cyclin, since Cln3 produced in the ydj1 mutant was fully active in the stimulation of p34CDC28 histone kinase activity. Moreover, Ydj1 directly associates with Cln3 in close proximity to the segment that is phosphorylated and signals degradation. Thus, binding of Ydj1 to this domain of Cln3 seems to be essential for the phosphorylation and breakdown of this cyclin. In a cell-free system, purified Ydj1 stimulated the p34CDC28-dependent phosphorylation of the C-terminal segment of Cln3 and did not affect phosphorylation of Cln2 (as was found in vivo). The reconstitution of this process with pure components provides evidence of a direct role for the chaperone in the phosphorylation of Cln3.
AB - The G1 cyclin Cln3 of the yeast Saccharomyces cerevisiae is rapidly degraded by the ubiquitin-proteasome pathway. This process is triggered by p34CDC28-dependent phosphorylation of Cln3. Here we demonstrate that the molecular chaperone Ydj1, a DnaJ homolog, is required for this phosphorylation. In a ydj1 mutant at the nonpermissive temperature, both phosphorylation and degradation of Cln3 were deficient. No change was seen upon inactivation of Sis1, another DnaJ homolog. The phosphorylation defect in the ydj1 mutant was specific to Cln3, because no reduction in the phosphorylation of Cln2 or histone H1, which also requires p34CDC28, was observed. Ydj1 was required for Cln3 phosphorylation and degradation rather than for the proper folding of this cyclin, since Cln3 produced in the ydj1 mutant was fully active in the stimulation of p34CDC28 histone kinase activity. Moreover, Ydj1 directly associates with Cln3 in close proximity to the segment that is phosphorylated and signals degradation. Thus, binding of Ydj1 to this domain of Cln3 seems to be essential for the phosphorylation and breakdown of this cyclin. In a cell-free system, purified Ydj1 stimulated the p34CDC28-dependent phosphorylation of the C-terminal segment of Cln3 and did not affect phosphorylation of Cln2 (as was found in vivo). The reconstitution of this process with pure components provides evidence of a direct role for the chaperone in the phosphorylation of Cln3.
UR - http://www.scopus.com/inward/record.url?scp=0029891796&partnerID=8YFLogxK
U2 - 10.1128/MCB.16.7.3679
DO - 10.1128/MCB.16.7.3679
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 8668184
AN - SCOPUS:0029891796
SN - 0270-7306
VL - 16
SP - 3679
EP - 3684
JO - Molecular and Cellular Biology
JF - Molecular and Cellular Biology
IS - 7
ER -