The crossing multiplier for solvable lattice models

Vladimir Belavin, Doron Gepner, J. Ramos Cabezas

פרסום מחקרי: פרסום בכתב עתמאמרביקורת עמיתים

3 ציטוטים ‏(Scopus)

תקציר

We study the large class of solvable lattice models, based on the data of conformal field theory. These models are constructed from any conformal field theory. We consider the lattice models based on affine algebras described by Jimbo et al, for the algebras ABCD and by Kuniba et al for G 2. We find a general formula for the crossing multipliers of these models. It is shown that these crossing multipliers are also given by the principally specialized characters of the model in question. Therefore we conjecture that the crossing multipliers in this large class of solvable interaction round the face lattice models are given by the characters of the conformal field theory on which they are based. We use this result to study the local state probabilities of these models and show that they are given by the branching rule, in regime III.

שפה מקוריתאנגלית
מספר המאמר085001
כתב עתJournal of Physics Communications
כרך6
מספר גיליון8
מזהי עצם דיגיטלי (DOIs)
סטטוס פרסוםפורסם - אוג׳ 2022

טביעת אצבע

להלן מוצגים תחומי המחקר של הפרסום 'The crossing multiplier for solvable lattice models'. יחד הם יוצרים טביעת אצבע ייחודית.

פורמט ציטוט ביבליוגרפי