The 5-CB algebra and fused SU(2) lattice models

Vladimir Belavin, Doron Gepner

פרסום מחקרי: פרסום בכתב עתמאמרביקורת עמיתים

1 ציטוט ‏(Scopus)

תקציר

We study the fused SU(2) models put forward by Date et al, that are a series of models with arbitrary number of blocks, which is the degree of the polynomial equation obeyed by the Boltzmann weights. We demonstrate by a direct calculation that a version of Birman-Murakami-Wenzl (BMW) algebra [1, 2] is obeyed by five, six and seven blocks models, conjecturing that the BMW algebra is a part of the algebra valid for any model with more than two blocks. To establish this conjecture, we assume that a certain ansatz holds for the baxterization of the models. We use the Yang-Baxter equation to describe explicitly the algebra for five blocks, obtaining 19 additional non-trivial relations. We name this algebra 5-CB (conformal braiding) algebra. Our method can be utilized to describe the algebra for any solvable model of this type and for any number of blocks.

שפה מקוריתאנגלית
מספר המאמר375202
כתב עתJournal of Physics A: Mathematical and Theoretical
כרך54
מספר גיליון37
מזהי עצם דיגיטלי (DOIs)
סטטוס פרסוםפורסם - ספט׳ 2021

טביעת אצבע

להלן מוצגים תחומי המחקר של הפרסום 'The 5-CB algebra and fused SU(2) lattice models'. יחד הם יוצרים טביעת אצבע ייחודית.

פורמט ציטוט ביבליוגרפי