The 4-CB algebra and solvable lattice models

Vladimir Belavin, Doran Gepner, Jian Rong Li, Ran Tessler

פרסום מחקרי: פרסום בכתב עתמאמרביקורת עמיתים

2 ציטוטים ‏(Scopus)

תקציר

We study the algebras underlying solvable lattice models of the type fusion interaction round the face (IRF). We propose that the algebras are universal, depending only on the number of blocks, which is the degree of polynomial equation obeyed by the Boltzmann weights. Using the Yang-Baxter equation and the ansatz for the Baxterization of the models, we show that the three blocks models obey a version of Birman-Murakami­Wenzl (BMW) algebra. For four blocks, we conjecture that the algebra, which is termed 4-CB (Conformal Braiding) algebra, is the BMW algebra with a different skein relation, along with one additional relation, and we provide evidence for this conjecture. We connect these algebras to knot theory by conjecturing new link invariants. The link invariants, in the case of four blocks, depend on three arbitrary parameters. We check our result for G2 model with the seven dimensional representation and for SU(2) with the isospin 3/2 representation, which are both four blocks theories.

שפה מקוריתאנגלית
מספר המאמר155
כתב עתJournal of High Energy Physics
כרך2019
מספר גיליון11
מזהי עצם דיגיטלי (DOIs)
סטטוס פרסוםפורסם - 1 נוב׳ 2019

טביעת אצבע

להלן מוצגים תחומי המחקר של הפרסום 'The 4-CB algebra and solvable lattice models'. יחד הם יוצרים טביעת אצבע ייחודית.

פורמט ציטוט ביבליוגרפי