Synthetic Sensor Array Training Sets for Neural Networks

פרסום מחקרי: פרסום בכתב עתמאמרביקורת עמיתים

3 ציטוטים ‏(Scopus)

תקציר

It is often hard to relate the sensor's electrical output to the physical scenario when a multidimensional measurement is of interest. An artificial neural network may be a solution. Nevertheless, if the training data set is extracted from a real experimental setup, it can become unreachable in terms of time resources. The same issue arises when the physical measurement is expected to extend across a wide range of values. This paper presents a novel method for overcoming the long training time in a physical experiment set up by bootstrapping a relatively small data set for generating a synthetic data set which can be used for training an artificial neural network. Such a method can be applied to various measurement systems that yield sensor output which combines simultaneous occurrences or wide-range values of physical phenomena of interest. We discuss to which systems our method may be applied. We exemplify our results on three study cases: a seismic sensor array, a linear array of strain gauges, and an optical sensor array. We present the experimental process, its results, and the resulting accuracies.

שפה מקוריתאנגלית
מספר המאמר9254315
כתב עתJournal of Sensors
כרך2019
מזהי עצם דיגיטלי (DOIs)
סטטוס פרסוםפורסם - 2019

טביעת אצבע

להלן מוצגים תחומי המחקר של הפרסום 'Synthetic Sensor Array Training Sets for Neural Networks'. יחד הם יוצרים טביעת אצבע ייחודית.

פורמט ציטוט ביבליוגרפי