SubStrat: A Subset-Based Optimization Strategy for Faster AutoML

Teddy Lazebnik, Amit Somech, Abraham Itzhak Weinberg

פרסום מחקרי: פרסום בכתב עתמאמרביקורת עמיתים

10 ציטוטים ‏(Scopus)

תקציר

Automated machine learning (AutoML) frameworks have become important tools in the data scientist’s arsenal, as they dramatically reduce the manual work devoted to the construction of ML pipelines. Such frameworks intelligently search among millions of possible ML pipelines-typically containing feature engineering, model selection, and hyper parameters tuning steps-and finally output an optimal pipeline in terms of predictive accuracy. However, when the dataset is large, each individual configuration takes longer to execute, therefore the overall AutoML running times become increasingly high. To this end, we present SubStrat, an AutoML optimization strategy that tackles the data size, rather than configuration space. It wraps existing AutoML tools, and instead of executing them di-rectly on the entire dataset, SubStrat uses a genetic-based algorithm to find a small yet representative data subset that preserves a par-ticular characteristic of the full data. It then employs the AutoML tool on the small subset, and finally, it refines the resulting pipeline by executing a restricted, much shorter, AutoML process on the large dataset. Our experimental results, performed on three popu-lar AutoML frameworks, Auto-Sklearn, TPOT, and H2O show that SubStrat reduces their running times by 76.3% (on average), with only a 4.15% average decrease in the accuracy of the resulting ML pipeline.

שפה מקוריתאנגלית
עמודים (מ-עד)772-780
מספר עמודים9
כתב עתProceedings of the VLDB Endowment
כרך16
מספר גיליון4
מזהי עצם דיגיטלי (DOIs)
סטטוס פרסוםפורסם - 2022
פורסם באופן חיצוניכן

טביעת אצבע

להלן מוצגים תחומי המחקר של הפרסום 'SubStrat: A Subset-Based Optimization Strategy for Faster AutoML'. יחד הם יוצרים טביעת אצבע ייחודית.

פורמט ציטוט ביבליוגרפי