Stylistic classification of cuneiform signs using convolutional neural networks

Vasiliy Yugay, Kartik Paliwal, Yunus Cobanoglu, Luis Sáenz, Ekaterine Gogokhia, Shai Gordin, Enrique Jiménez

פרסום מחקרי: פרסום בכתב עתמאמרביקורת עמיתים

2 ציטוטים ‏(Scopus)

תקציר

The classification of cuneiform signs according to stylistic criteria is a difficult task, which often leaves experts in the field disagree. This study introduces a new publicly available dataset of cuneiform signs classified according to style and Convolutional Neural Network (CNN) approaches to differentiate between cuneiform signs of the two main styles of the first millennium BCE, Neo-Assyrian and Neo-Babylonian. The CNN model reaches an accuracy of 83 % in style classification. This tool has potential implications for the recognition of individual scribes and the dating of undated cuneiform tablets.

שפה מקוריתאנגלית
עמודים (מ-עד)15-27
מספר עמודים13
כתב עתIT - Information Technology
כרך66
מספר גיליון1
מזהי עצם דיגיטלי (DOIs)
סטטוס פרסוםפורסם - 1 פבר׳ 2024

טביעת אצבע

להלן מוצגים תחומי המחקר של הפרסום 'Stylistic classification of cuneiform signs using convolutional neural networks'. יחד הם יוצרים טביעת אצבע ייחודית.

פורמט ציטוט ביבליוגרפי