SPC scheme to monitor linear predictors embedded in nonlinear profiles

Revital Danoch, Haim Shore

פרסום מחקרי: פרסום בכתב עתמאמרביקורת עמיתים

תקציר

Response Modeling Methodology (RMM) is a general platform to model monotone convex relationships. In this article, RMM is combined with linear regression analysis to model and estimate linear predictors (LPs) embedded in a nonlinear profile. A regression-adjusted statistical process control scheme is then implemented to monitor the LP's residuals. To model and estimate the LP, RMM defines a Taylor series expansion of an unknown response transformation and then use canonical correlation analysis to estimate the LP. A possible hindrance to the implementation of the new scheme is possible occurrence of nonnormal errors (in violation of the linear regression model). Reasons for the occurrence of this phenomenon are explored and remedies offered. The effectiveness of the new scheme is demonstrated for data generated via Monte Carlo simulation. Results from hypothesis testing clearly indicate that the type of the response distribution, its skewness and the sample size, do not affect the effectiveness of the new approach. A detailed implementation routine is expounded, accompanied by a numerical example. When interest is solely focused on the stability of the LP, and the nonlinear profile per se is of little interest, the new general RMM-based statistical process control scheme delivers an effective platform for process monitoring.

שפה מקוריתאנגלית
עמודים (מ-עד)1453-1466
מספר עמודים14
כתב עתQuality and Reliability Engineering International
כרך32
מספר גיליון4
מזהי עצם דיגיטלי (DOIs)
סטטוס פרסוםפורסם - 1 יוני 2016

טביעת אצבע

להלן מוצגים תחומי המחקר של הפרסום 'SPC scheme to monitor linear predictors embedded in nonlinear profiles'. יחד הם יוצרים טביעת אצבע ייחודית.

פורמט ציטוט ביבליוגרפי