TY - JOUR
T1 - Sign-constancy of Green’s functions for impulsive nonlocal boundary value problems
AU - Domoshnitsky, A.
AU - Mizgireva, Iu
N1 - Publisher Copyright:
© 2019, The Author(s).
PY - 2019/12/1
Y1 - 2019/12/1
N2 - We consider the following second order impulsive differential equation with delays:{(Lx)(t)≡x″(t)+∑j=1paj(t)x′(t−τj(t))+∑j=1pbj(t)x(t−θj(t))=f(t),t∈[0,ω],x(tk)=γkx(tk−0),x′(tk)=δkx′(tk−0),k=1,2,…,r. In this paper we consider sufficient conditions of nonpositivity of Green’s function for impulsive differential equation with nonlocal boundary conditions.
AB - We consider the following second order impulsive differential equation with delays:{(Lx)(t)≡x″(t)+∑j=1paj(t)x′(t−τj(t))+∑j=1pbj(t)x(t−θj(t))=f(t),t∈[0,ω],x(tk)=γkx(tk−0),x′(tk)=δkx′(tk−0),k=1,2,…,r. In this paper we consider sufficient conditions of nonpositivity of Green’s function for impulsive differential equation with nonlocal boundary conditions.
KW - Boundary value problems
KW - Second order impulsive differential equations
KW - Sign-constancy of Green’s functions
UR - http://www.scopus.com/inward/record.url?scp=85074847653&partnerID=8YFLogxK
U2 - 10.1186/s13661-019-1290-1
DO - 10.1186/s13661-019-1290-1
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:85074847653
SN - 1687-2762
VL - 2019
JO - Boundary Value Problems
JF - Boundary Value Problems
IS - 1
M1 - 175
ER -