Reading Akkadian cuneiform using natural language processing

Shai Gordin, Gai Gutherz, Ariel Elazary, Avital Romach, Enrique Jiménez, Jonathan Berant, Yoram Cohen

פרסום מחקרי: פרסום בכתב עתמאמרביקורת עמיתים

21 ציטוטים ‏(Scopus)

תקציר

In this paper we present a new method for automatic transliteration and segmentation of Unicode cuneiform glyphs using Natural Language Processing (NLP) techniques. Cuneiform is one of the earliest known writing system in the world, which documents millennia of human civilizations in the ancient Near East. Hundreds of thousands of cuneiform texts were found in the nineteenth and twentieth centuries CE, most of which are written in Akkadian. However, there are still tens of thousands of texts to be published. We use models based on machine learning algorithms such as recurrent neural networks (RNN) with an accuracy reaching up to 97% for automatically transliterating and segmenting standard Unicode cuneiform glyphs into words. Therefore, our method and results form a major step towards creating a human-machine interface for creating digitized editions. Our code, Akkademia, is made publicly available for use via a web application, a python package, and a github repository.

שפה מקוריתאנגלית
מספר המאמרe0240511
כתב עתPLoS ONE
כרך15
מספר גיליון10 October
מזהי עצם דיגיטלי (DOIs)
סטטוס פרסוםפורסם - אוק׳ 2020

טביעת אצבע

להלן מוצגים תחומי המחקר של הפרסום 'Reading Akkadian cuneiform using natural language processing'. יחד הם יוצרים טביעת אצבע ייחודית.

פורמט ציטוט ביבליוגרפי