Quasirandomness in hypergraphs

Elad Aigner-Horev, David Conlon, Hiệp Hàn, Yury Person, Mathias Schacht

פרסום מחקרי: פרסום בכתב עתמאמרביקורת עמיתים

17 ציטוטים ‏(Scopus)

תקציר

An n-vertex graph G of edge density p is considered to be quasirandom if it shares several important properties with the random graph G(n, p). A well-known theorem of Chung, Graham and Wilson states that many such ‘typical’ properties are asymptotically equivalent and, thus, a graph G possessing one such property automatically satisfies the others. In recent years, work in this area has focused on uncovering more quasirandom graph properties and on extending the known results to other discrete structures. In the context of hypergraphs, however, one may consider several different notions of quasirandomness. A complete description of these notions has been provided recently by Towsner, who proved several central equivalences using an analytic framework. We give short and purely combinatorial proofs of the main equivalences in Towsner’s result.

שפה מקוריתאנגלית
מספר המאמר#P3.34
כתב עתElectronic Journal of Combinatorics
כרך25
מספר גיליון3
מזהי עצם דיגיטלי (DOIs)
סטטוס פרסוםפורסם - 24 אוג׳ 2018

טביעת אצבע

להלן מוצגים תחומי המחקר של הפרסום 'Quasirandomness in hypergraphs'. יחד הם יוצרים טביעת אצבע ייחודית.

פורמט ציטוט ביבליוגרפי