TY - GEN
T1 - Proving Unsatisfiability with Hitting Formulas
AU - Filmus, Yuval
AU - Hirsch, Edward A.
AU - Riazanov, Artur
AU - Smal, Alexander
AU - Vinyals, Marc
N1 - Publisher Copyright:
© 2024 Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing. All rights reserved.
PY - 2024/1
Y1 - 2024/1
N2 - A hitting formula is a set of Boolean clauses such that any two of the clauses cannot be simultaneously falsified. Hitting formulas have been studied in many different contexts at least since [45] and, based on experimental evidence, Peitl and Szeider [53] conjectured that unsatisfiable hitting formulas are among the hardest for resolution. Using the fact that hitting formulas are easy to check for satisfiability we make them the foundation of a new static proof system Hitting: A refutation of a CNF in Hitting is an unsatisfiable hitting formula such that each of its clauses is a weakening of a clause of the refuted CNF. Comparing this system to resolution and other proof systems is equivalent to studying the hardness of hitting formulas. Our first result is that Hitting is quasi-polynomially simulated by tree-like resolution, which means that hitting formulas cannot be exponentially hard for resolution and partially refutes the conjecture of Peitl and Szeider. We show that tree-like resolution and Hitting are quasipolynomially separated, while for resolution, this question remains open. For a system that is only quasi-polynomially stronger than tree-like resolution, Hitting is surprisingly difficult to polynomially simulate in another proof system. Using the ideas of Raz Shpilka s polynomial identity testing for noncommutative circuits [57] we show that Hitting is p-simulated by Extended Frege, but we conjecture that much more efficient simulations exist. As a byproduct, we show that a number of static (semi)algebraic systems are verifiable in deterministic polynomial time. We consider multiple extensions of Hitting, and in particular a proof system Hitting(⊕) related to the Res(⊕) proof system for which no superpolynomial-size lower bounds are known. Hitting(⊕) p-simulates the tree-like version of Res(⊕) and is at least quasi-polynomially stronger. We show that formulas expressing the non-existence of perfect matchings in the graphs Kn,n+2 are exponentially hard for Hitting(⊕) via a reduction to the partition bound for communication complexity.
AB - A hitting formula is a set of Boolean clauses such that any two of the clauses cannot be simultaneously falsified. Hitting formulas have been studied in many different contexts at least since [45] and, based on experimental evidence, Peitl and Szeider [53] conjectured that unsatisfiable hitting formulas are among the hardest for resolution. Using the fact that hitting formulas are easy to check for satisfiability we make them the foundation of a new static proof system Hitting: A refutation of a CNF in Hitting is an unsatisfiable hitting formula such that each of its clauses is a weakening of a clause of the refuted CNF. Comparing this system to resolution and other proof systems is equivalent to studying the hardness of hitting formulas. Our first result is that Hitting is quasi-polynomially simulated by tree-like resolution, which means that hitting formulas cannot be exponentially hard for resolution and partially refutes the conjecture of Peitl and Szeider. We show that tree-like resolution and Hitting are quasipolynomially separated, while for resolution, this question remains open. For a system that is only quasi-polynomially stronger than tree-like resolution, Hitting is surprisingly difficult to polynomially simulate in another proof system. Using the ideas of Raz Shpilka s polynomial identity testing for noncommutative circuits [57] we show that Hitting is p-simulated by Extended Frege, but we conjecture that much more efficient simulations exist. As a byproduct, we show that a number of static (semi)algebraic systems are verifiable in deterministic polynomial time. We consider multiple extensions of Hitting, and in particular a proof system Hitting(⊕) related to the Res(⊕) proof system for which no superpolynomial-size lower bounds are known. Hitting(⊕) p-simulates the tree-like version of Res(⊕) and is at least quasi-polynomially stronger. We show that formulas expressing the non-existence of perfect matchings in the graphs Kn,n+2 are exponentially hard for Hitting(⊕) via a reduction to the partition bound for communication complexity.
KW - hitting formulas
KW - polynomial identity testing
KW - query complexity
UR - http://www.scopus.com/inward/record.url?scp=85184135213&partnerID=8YFLogxK
U2 - 10.4230/LIPIcs.ITCS.2024.48
DO - 10.4230/LIPIcs.ITCS.2024.48
M3 - ???researchoutput.researchoutputtypes.contributiontobookanthology.conference???
AN - SCOPUS:85184135213
T3 - Leibniz International Proceedings in Informatics, LIPIcs
BT - 15th Innovations in Theoretical Computer Science Conference, ITCS 2024
A2 - Guruswami, Venkatesan
PB - Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing
T2 - 15th Innovations in Theoretical Computer Science Conference, ITCS 2024
Y2 - 30 January 2024 through 2 February 2024
ER -