Predicting lung cancer's metastats' locations using bioclinical model

פרסום מחקרי: פרסום בכתב עתמאמרביקורת עמיתים

תקציר

Background: Lung cancer is a global leading cause of cancer-related deaths, and metastasis profoundly influences treatment outcomes. The limitations of conventional imaging in detecting small metastases highlight the crucial need for advanced diagnostic approaches. Methods: This study developed a bioclinical model using three-dimensional CT scans to predict the spatial spread of lung cancer metastasis. Utilizing a three-layer biological model, we identified regions with a high probability of metastasis colonization and validated the model on real-world data from 10 patients. Findings: The validated bioclinical model demonstrated a promising 74% accuracy in predicting metastasis locations, showcasing the potential of integrating biophysical and machine learning models. These findings underscore the significance of a more comprehensive approach to lung cancer diagnosis and treatment. Interpretation: This study's integration of biophysical and machine learning models contributes to advancing lung cancer diagnosis and treatment, providing nuanced insights for informed decision-making.

שפה מקוריתאנגלית
מספר המאמר1388702
כתב עתFrontiers in Medicine
כרך11
מזהי עצם דיגיטלי (DOIs)
סטטוס פרסוםפורסם - 2024

טביעת אצבע

להלן מוצגים תחומי המחקר של הפרסום 'Predicting lung cancer's metastats' locations using bioclinical model'. יחד הם יוצרים טביעת אצבע ייחודית.

פורמט ציטוט ביבליוגרפי