On the benefits of adaptivity in property testing of dense graphs

Mira Gonen, Dana Ron

פרסום מחקרי: פרק בספר / בדוח / בכנספרסום בספר כנסביקורת עמיתים

12 ציטוטים ‏(Scopus)

תקציר

We consider the question of whether adaptivity can improve the complexity of property testing algorithms in the dense graphs model. It is known that there can be at most a quadratic gap between adaptive and non-adaptive testers in this model, but it was not known whether any gap indeed exists. In this work we reveal such a gap. Specifically, we focus on the well studied property of bipartiteness. Bogdanov and Trevisan (IEEE Symposium on Computational Complexity, 2004) proved a lower bound of Ω(1/ε2) on the query complexity of non-adaptive testing algorithms for bipartiteness. This lower bound holds for graphs with maximum degree O(εn). Our main result is an adaptive testing algorithm for bipartiteness of graphs with maximum degree O(en) whose query complexity is1 Õ(1/ε3/2). A slightly modified version of our algorithm can be used to test the combined property of being bipartite and having maximum degree O(εn). Thus we demonstrate that adaptive testers are stronger than non-adaptive testers in the dense graphs model. We note that the upper bound we obtain is tight up-to polylogarithmic factors, in view of the Ω(1/ε3/2) lower bound of Bogdanov and Trevisan for adaptive testers. In addition we show that Õ(1/ε3/2) queries also suffice when (almost) all vertices have degree Ω(√ε · n). In this case adaptivity is not necessary.

שפה מקוריתאנגלית
כותר פרסום המארחApproximation, Randomization, and Combinatorial Optimization
כותר משנה של פרסום המארחAlgorithms and Techniques - 10th International Workshop, APPROX 2007 and 11th International Workshop, RANDOM 2007, Proceedings
עמודים525-539
מספר עמודים15
מזהי עצם דיגיטלי (DOIs)
סטטוס פרסוםפורסם - 2007
פורסם באופן חיצוניכן
אירוע10th International Workshop on Approximation Algorithms for Combinatorial Optimization Problems, APPROX 2007 and 11th International Workshop on Randomization and Computation, RANDOM 2007 - Princeton, NJ, ארצות הברית
משך הזמן: 20 אוג׳ 200722 אוג׳ 2007

סדרות פרסומים

שםLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
כרך4627 LNCS
ISSN (מודפס)0302-9743
ISSN (אלקטרוני)1611-3349

כנס

כנס10th International Workshop on Approximation Algorithms for Combinatorial Optimization Problems, APPROX 2007 and 11th International Workshop on Randomization and Computation, RANDOM 2007
מדינה/אזורארצות הברית
עירPrinceton, NJ
תקופה20/08/0722/08/07

טביעת אצבע

להלן מוצגים תחומי המחקר של הפרסום 'On the benefits of adaptivity in property testing of dense graphs'. יחד הם יוצרים טביעת אצבע ייחודית.

פורמט ציטוט ביבליוגרפי