On symmetry of independence polynomials

Vadim E. Levit, Eugen Mandrescu

פרסום מחקרי: פרסום בכתב עתמאמרביקורת עמיתים

5 ציטוטים ‏(Scopus)

תקציר

An independent set in a graph is a set of pairwise non-adjacent vertices, and α(G) is the size of a maximum independent set in the graph G. A matching is a set of non-incident edges, while μ(G) is the cardinality of a maximum matching. If s k is the number of independent sets of size k in G, then I(G; x) = s 0 + s 1x + s 2x 2 + ... + s αx α, α = α (G), is called the independence polynomial of G (Gutman and Harary, 1986). If s j = s α-j for all 0 ≤ j ≤ [α=2], then I(G; x) is called symmetric (or palindromic). It is known that the graph G Ο 2K 1, obtained by joining each vertex of G to two new vertices, has a symmetric independence polynomial (Stevanović, 1998). In this paper we develop a new algebraic technique in order to take care of symmetric independence polynomials. On the one hand, it provides us with alternative proofs for some previously known results. On the other hand, this technique allows to show that for every graph G and for each non-negative integer k ≤ μ (G), one can build a graph H, such that: G is a subgraph of H, I (H; x) is symmetric, and I (G ο 2K 1; x) = (1 + x) k I (H; x).

שפה מקוריתאנגלית
עמודים (מ-עד)472-486
מספר עמודים15
כתב עתSymmetry
כרך3
מספר גיליון3
מזהי עצם דיגיטלי (DOIs)
סטטוס פרסוםפורסם - ספט׳ 2011

טביעת אצבע

להלן מוצגים תחומי המחקר של הפרסום 'On symmetry of independence polynomials'. יחד הם יוצרים טביעת אצבע ייחודית.

פורמט ציטוט ביבליוגרפי