On nonlinear multi-covering problems

Reuven Cohen, Mira Gonen, Asaf Levin, Shmuel Onn

פרסום מחקרי: פרסום בכתב עתמאמרביקורת עמיתים

1 ציטוט ‏(Scopus)

תקציר

In this paper we define the exact k-coverage problem, and study it for the special cases of intervals and circular-arcs. Given a set system consisting of a ground set of n points with integer demands { d0, ⋯ , dn - 1} and integer rewards, subsets of points, and an integer k, select up to k subsets such that the sum of rewards of the covered points is maximized, where point i is covered if exactly di subsets containing it are selected. Here we study this problem and some related optimization problems. We prove that the exact k-coverage problem with unbounded demands is NP-hard even for intervals on the real line and unit rewards. Our NP-hardness proof uses instances where some of the natural parameters of the problem are unbounded (each of these parameters is linear in the number of points). We show that this property is essential, as if we restrict (at least) one of these parameters to be a constant, then the problem is polynomial time solvable. Our polynomial time algorithms are given for various generalizations of the problem (in the setting where one of the parameters is a constant).

שפה מקוריתאנגלית
עמודים (מ-עד)645-659
מספר עמודים15
כתב עתJournal of Combinatorial Optimization
כרך33
מספר גיליון2
מזהי עצם דיגיטלי (DOIs)
סטטוס פרסוםפורסם - 1 פבר׳ 2017

טביעת אצבע

להלן מוצגים תחומי המחקר של הפרסום 'On nonlinear multi-covering problems'. יחד הם יוצרים טביעת אצבע ייחודית.

פורמט ציטוט ביבליוגרפי