On Error and Compression Rates for Prototype Rules

Omer Kerem, Roi Weiss

    פרסום מחקרי: פרק בספר / בדוח / בכנספרסום בספר כנסביקורת עמיתים

    1 ציטוט ‏(Scopus)

    תקציר

    We study the close interplay between error and compression in the non-parametric multiclass classification setting in terms of prototype learning rules. We focus in particular on a recently proposed compression-based learning rule termed OptiNet. Beyond its computational merits, this rule has been recently shown to be universally consistent in any metric instance space that admits a universally consistent rule—the first learning algorithm known to enjoy this property. However, its error and compression rates have been left open. Here we derive such rates in the case where instances reside in Euclidean space under commonly posed smoothness and tail conditions on the data distribution. We first show that OptiNet achieves non-trivial compression rates while enjoying near minimax-optimal error rates. We then proceed to study a novel general compression scheme for further compressing prototype rules that locally adapts to the noise level without sacrificing accuracy. Applying it to OptiNet, we show that under a geometric margin condition, further gain in the compression rate is achieved. Experimental results comparing the performance of the various methods are presented.

    שפה מקוריתאנגלית
    כותר פרסום המארחAAAI-23 Technical Tracks 7
    עורכיםBrian Williams, Yiling Chen, Jennifer Neville
    עמודים8228-8236
    מספר עמודים9
    מסת"ב (אלקטרוני)9781577358800
    מזהי עצם דיגיטלי (DOIs)
    סטטוס פרסוםפורסם - 27 יוני 2023
    אירוע37th AAAI Conference on Artificial Intelligence, AAAI 2023 - Washington, ארצות הברית
    משך הזמן: 7 פבר׳ 202314 פבר׳ 2023

    סדרות פרסומים

    שםProceedings of the 37th AAAI Conference on Artificial Intelligence, AAAI 2023
    כרך37

    כנס

    כנס37th AAAI Conference on Artificial Intelligence, AAAI 2023
    מדינה/אזורארצות הברית
    עירWashington
    תקופה7/02/2314/02/23

    טביעת אצבע

    להלן מוצגים תחומי המחקר של הפרסום 'On Error and Compression Rates for Prototype Rules'. יחד הם יוצרים טביעת אצבע ייחודית.

    פורמט ציטוט ביבליוגרפי