Multi-GPU processing of unstructured data for machine learning

Joel Ratsaby, Alexander Timashkov

פרסום מחקרי: פרק בספר / בדוח / בכנספרסום בספר כנסביקורת עמיתים

תקציר

We introduce a method for processing unstructured data for machine learning based on an LZ-complexity string distance. Computing the LZ-complexity is inherently a serial data compression process; hence, we introduce a string distance computed by a parallel algorithm that utilizes multiple GPU devices to process unstructured data, which typically exists in large quantities. We use this algorithm to compute a distance matrix representation of the unstructured data that standard learning algorithms can use to learn. Our approach eliminates the need for human-based feature definition or extraction. Except for some simple data reformatting done manually, our proposed approach operates on the original raw data and is fully automatic. The parallel computation of the distance matrix is efficient. It obtains a speed-up factor of 528 in computing the distance matrix between every possible pair of 16 strings of length 1M bytes. We show that for learning time-series classification, relative to the ubiquitous TFIDF data representation, the distance-matrix representation yields a higher learning accuracy for most of a broad set of learning algorithms. Thus, the parallel algorithm can be helpful in efficiently and accurately learning from unstructured data.

שפה מקוריתאנגלית
כותר פרסום המארחResearch Paper Proceedings of the ISC High Performance 2024
מוציא לאורInstitute of Electrical and Electronics Engineers Inc.
מסת"ב (אלקטרוני)9783982633602
סטטוס פרסוםפורסם - 2024
אירוע39th International Conference on High Performance Computing, ISC High Performance 2024 - Hamburg, גרמניה
משך הזמן: 12 מאי 202416 מאי 2024

סדרות פרסומים

שםResearch Paper Proceedings of the ISC High Performance 2024

כנס

כנס39th International Conference on High Performance Computing, ISC High Performance 2024
מדינה/אזורגרמניה
עירHamburg
תקופה12/05/2416/05/24

טביעת אצבע

להלן מוצגים תחומי המחקר של הפרסום 'Multi-GPU processing of unstructured data for machine learning'. יחד הם יוצרים טביעת אצבע ייחודית.

פורמט ציטוט ביבליוגרפי