MPC for Tech Giants (GMPC): Enabling Gulliver and the Lilliputians to Cooperate Amicably

Bar Alon, Moni Naor, Eran Omri, Uri Stemmer

פרסום מחקרי: פרק בספר / בדוח / בכנספרסום בספר כנסביקורת עמיתים

תקציר

In the current digital world, large organizations (sometimes referred to as tech giants) provide service to extremely large numbers of users. The service provider is often interested in computing various data analyses over the private data of its users, which in turn have their incentives to cooperate, but do not necessarily trust the service provider. In this work, we introduce the Gulliver multi-party computation model (GMPC) to realistically capture the above scenario. The GMPC model considers a single highly powerful party, called the server or Gulliver, that is connected to n users over a star topology network (alternatively formulated as a full network, where the server can block any message). The users are significantly less powerful than the server, and, in particular, should have both computation and communication complexities that are polylogarithmic in n. Protocols in the GMPC model should be secure against malicious adversaries that may corrupt a subset of the users and/or the server. Designing protocols in the GMPC model is a delicate task, since users can only hold information about polylog(n) other users (and, in particular, can only communicate with polylog(n) other users). In addition, the server can block any message between any pair of honest parties. Thus, reaching an agreement becomes a challenging task. Nevertheless, we design generic protocols in the GMPC model, assuming that at most α<1/8 fraction of the users may be corrupted (in addition to the server). Our main contribution is a variant of Feige’s committee election protocol [FOCS 1999] that is secure in the GMPC model. Given this tool we show: Assuming fully homomorphic encryption (FHE), any computationally efficient function with On·polylog(n)-size output can be securely computed in the GMPC model.Any function that can be computed by a circuit of O(polylog(n)) depth, On·polylog(n) size, and bounded fan-in and fan-out can be securely computed in the GMPC model assuming vector commitment schemes (without assuming FHE).In particular, sorting can be securely computed in the GMPC model assuming vector commitment schemes. This has important applications for the shuffle model of differential privacy, and resolves an open question of Bell et al. [CCS 2020]. Assuming fully homomorphic encryption (FHE), any computationally efficient function with On·polylog(n)-size output can be securely computed in the GMPC model. Any function that can be computed by a circuit of O(polylog(n)) depth, On·polylog(n) size, and bounded fan-in and fan-out can be securely computed in the GMPC model assuming vector commitment schemes (without assuming FHE). In particular, sorting can be securely computed in the GMPC model assuming vector commitment schemes. This has important applications for the shuffle model of differential privacy, and resolves an open question of Bell et al. [CCS 2020].

שפה מקוריתאנגלית
כותר פרסום המארחAdvances in Cryptology – CRYPTO 2024 - 44th Annual International Cryptology Conference, Proceedings
עורכיםLeonid Reyzin, Douglas Stebila
מוציא לאורSpringer Science and Business Media Deutschland GmbH
עמודים74-108
מספר עמודים35
מסת"ב (מודפס)9783031683961
מזהי עצם דיגיטלי (DOIs)
סטטוס פרסוםפורסם - 2024
אירוע44th Annual International Cryptology Conference, CRYPTO 2024 - Santa Barbara, ארצות הברית
משך הזמן: 18 אוג׳ 202422 אוג׳ 2024

סדרות פרסומים

שםLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
כרך14927 LNCS
ISSN (מודפס)0302-9743
ISSN (אלקטרוני)1611-3349

כנס

כנס44th Annual International Cryptology Conference, CRYPTO 2024
מדינה/אזורארצות הברית
עירSanta Barbara
תקופה18/08/2422/08/24

טביעת אצבע

להלן מוצגים תחומי המחקר של הפרסום 'MPC for Tech Giants (GMPC): Enabling Gulliver and the Lilliputians to Cooperate Amicably'. יחד הם יוצרים טביעת אצבע ייחודית.

פורמט ציטוט ביבליוגרפי