Movie recommender system for profit maximization

Amos Azaria, Avinatan Hassidim, Sarit Kraus, Adi Eshkol, Ofer Weintraub, Irit Netanely

פרסום מחקרי: פרק בספר / בדוח / בכנספרסום בספר כנסביקורת עמיתים

תקציר

Traditional recommender systems try to provide users with recommendations which maximize the probability that the user will accept them. Recent studies have shown that recommender systems have a positive effect on the provider's revenue. In this paper we show that by giving a different set of recommendations, the recommendation system can further increase the business' utility (e.g. revenue), without any significant drop in user satisfaction. Indeed, the recommendation system designer should have in mind both the user, whose taste we need to reveal, and the business, which wants to promote specific content. In order to study these questions, we performed a large body of experiments on Amazon Mechanical Turk. In each of the experiments, we compare a commercial state-of-the-art recommendation engine with a modified recommendation list, which takes into account the utility (or revenue) which the business obtains from each suggestion that is accepted by the user. We show that the modified recommendation list is more desirable for the business, as the end result gives the business a higher utility (or revenue). To study possible longterm effects of giving the user worse suggestions, we asked the users how they perceive the list of recommendation that they received. Our findings are that any difference in user satisfaction between the list is negligible, and not statistically significant. We also uncover a phenomenon where movie consumers prefer watching and even paying for movies that they have already seen in the past than movies that are new to them.

שפה מקוריתאנגלית
כותר פרסום המארחIntelligent Techniques for Web Personalization and Recommendation - Papers from the 2013 AAAI Workshop, Technical Report
מוציא לאורAI Access Foundation
עמודים2-8
מספר עמודים7
מסת"ב (מודפס)9781577356226
סטטוס פרסוםפורסם - 2013
פורסם באופן חיצוניכן
אירוע2013 AAAI Workshop - Bellevue, WA, ארצות הברית
משך הזמן: 15 יולי 201315 יולי 2013

סדרות פרסומים

שםAAAI Workshop - Technical Report
כרךWS-13-11

כנס

כנס2013 AAAI Workshop
מדינה/אזורארצות הברית
עירBellevue, WA
תקופה15/07/1315/07/13

טביעת אצבע

להלן מוצגים תחומי המחקר של הפרסום 'Movie recommender system for profit maximization'. יחד הם יוצרים טביעת אצבע ייחודית.

פורמט ציטוט ביבליוגרפי