Measuring flight-destination similarity: A multidimensional approach

פרסום מחקרי: פרסום בכתב עתמאמרביקורת עמיתים

תקציר

E-tourism websites offer users a vast array of travel destinations and opportunities, necessitating tools that enable destination comparison and intelligent search capabilities. One key requirement for such tools is the ability to measure the similarity between destinations. Over the years, various similarity measurement techniques have been proposed, including user-based and content-based approaches. However, many of these techniques require data preparation or prior domain knowledge from experts. In contrast, this study proposes an innovative approach that requires no prior domain knowledge of flight destinations or their relationships, and utilizes only readily available data. Our approach draws upon concepts from image recognition and natural language processing (NLP) to extract hidden aspects of destinations. Using data from a flight-search website as a testbed, we analyze similarity metrics based on state-of-the-art methods for image recognition, NLP, and product-network analysis. We then compare these metrics to those obtained by human subjects. Our findings suggest that no single method dominates in all aspects, leading us to propose a hybrid method that leverages the strengths of each. The proposed method can be readily applied to measure product similarity in other domains.

שפה מקוריתאנגלית
מספר המאמר121802
כתב עתExpert Systems with Applications
כרך238
מזהי עצם דיגיטלי (DOIs)
סטטוס פרסוםפורסם - 15 מרץ 2024

טביעת אצבע

להלן מוצגים תחומי המחקר של הפרסום 'Measuring flight-destination similarity: A multidimensional approach'. יחד הם יוצרים טביעת אצבע ייחודית.

פורמט ציטוט ביבליוגרפי