Large width nearest prototype classification on general distance spaces

Martin Anthony, Joel Ratsaby

פרסום מחקרי: פרסום בכתב עתמאמרביקורת עמיתים

4 ציטוטים ‏(Scopus)

תקציר

In this paper we consider the problem of learning nearest-prototype classifiers in any finite distance space; that is, in any finite set equipped with a distance function. An important advantage of a distance space over a metric space is that the triangle inequality need not be satisfied, which makes our results potentially very useful in practice. We consider a family of binary classifiers for learning nearest-prototype classification on distance spaces, building on the concept of large-width learning which we introduced and studied in earlier works. Nearest-prototype is a more general version of the ubiquitous nearest-neighbor classifier: a prototype may or may not be a sample point. One advantage in the approach taken in this paper is that the error bounds depend on a ‘width’ parameter, which can be sample-dependent and thereby yield a tighter bound.

שפה מקוריתאנגלית
עמודים (מ-עד)65-79
מספר עמודים15
כתב עתTheoretical Computer Science
כרך738
מזהי עצם דיגיטלי (DOIs)
סטטוס פרסוםפורסם - 22 אוג׳ 2018

טביעת אצבע

להלן מוצגים תחומי המחקר של הפרסום 'Large width nearest prototype classification on general distance spaces'. יחד הם יוצרים טביעת אצבע ייחודית.

פורמט ציטוט ביבליוגרפי