LARGE RAINBOW CLIQUES IN RANDOMLY PERTURBED DENSE GRAPHS

Elad Aigner-Horev, Oran Danon, Dan Hefetz, Shoham Letzter

פרסום מחקרי: פרסום בכתב עתמאמרביקורת עמיתים

1 ציטוט ‏(Scopus)

תקציר

For two graphs G and H, write (Equation presented). H if G has the property that every proper coloring of its edges yields a rainbow copy of H. We study the thresholds for such so-called anti-Ramsey properties in randomly perturbed dense graphs, which are unions of the form G ⋃ G (n, p), where G is an n-vertex graph with edge-density at least d, and d is a constant that does not depend on n. Our results in this paper, combined with our results in a companion paper, determine the threshold for the property (Equation presented). In this paper, we show that for s ≥ 9 the threshold is (Equation presented). in fact, our 1-statement is a supersaturation result. This turns out to (almost) be the threshold for s = 8 as well, but for every 4 ≤ s ≤ 7, the threshold is lower; see our companion paper for more details. Also in this paper, we determine that the threshold for the property (Equation presented). for every l ≤ 2; in particular, the threshold does not depend on the length of the cycle C2l - 1. For even cycles, and in fact any fixed bipartite graph, no random edges are needed at all; that is, (Equation presented). always holds, whenever G is as above and H is bipartite.

שפה מקוריתאנגלית
עמודים (מ-עד)2975-2994
מספר עמודים20
כתב עתSIAM Journal on Discrete Mathematics
כרך36
מספר גיליון4
מזהי עצם דיגיטלי (DOIs)
סטטוס פרסוםפורסם - 2022

טביעת אצבע

להלן מוצגים תחומי המחקר של הפרסום 'LARGE RAINBOW CLIQUES IN RANDOMLY PERTURBED DENSE GRAPHS'. יחד הם יוצרים טביעת אצבע ייחודית.

פורמט ציטוט ביבליוגרפי