Infinitely many conservation laws for the discrete kdv equation

Alexander G. Rasin, Jeremy Schiff

פרסום מחקרי: פרסום בכתב עתמאמרביקורת עמיתים

14 ציטוטים ‏(Scopus)

תקציר

Rasin and Hydon (2007 J. Phys. A: Math. Theor. 40 12763-73) suggested a way to construct an infinite number of conservation laws for the discrete KdV equation (dKdV), by repeated application of a certain symmetry to a known conservation law. It was not decided, however, whether the resulting conservation laws were distinct and nontrivial. In this paper we obtain the following results: (1) we give an alternative method to construct an infinite number of conservation laws using a discrete version of the Gardner transformation. (2) We give a direct proof that the conservation laws obtained by the method of Rasin and Hydon are indeed distinct and nontrivial. (3) We consider a continuum limit in which the dKdV equation becomes a first-order eikonal equation. In this limit the two sets of conservation laws become the same, and are evidently distinct and nontrivial. This proves the nontriviality of the conservation laws constructed by the Gardner method, and gives an alternative proof of the nontriviality of the conservation laws constructed by the method of Rasin and Hydon.

שפה מקוריתאנגלית
מספר המאמר175205
כתב עתJournal of Physics A: Mathematical and Theoretical
כרך42
מספר גיליון17
מזהי עצם דיגיטלי (DOIs)
סטטוס פרסוםפורסם - 2009
פורסם באופן חיצוניכן

טביעת אצבע

להלן מוצגים תחומי המחקר של הפרסום 'Infinitely many conservation laws for the discrete kdv equation'. יחד הם יוצרים טביעת אצבע ייחודית.

פורמט ציטוט ביבליוגרפי