Improved prediction of settling behavior of solid particles through machine learning analysis of experimental retention time data

Liron Simon Keren, Teddy Lazebnik, Alex Liberzon

פרסום מחקרי: פרסום בכתב עתמאמרביקורת עמיתים

תקציר

The motion of particles through density-stratified interfaces is a common phenomenon in environmental and engineering applications. However, the mechanics of particle-stratification interactions in various combinations of particle and fluid properties are not well understood. This study presents a novel machine-learning (ML) approach to experimental data of inertial particles crossing a density-stratified interface. A simplified particle settling experiment was conducted to obtain a large number of particles and expand the parameter range. Using ML, the study explores new correlations that collapse the data gathered in this and in previous work by Verso et al. (2019). The “delay time”, which is the time between the particle exiting the interfacial layer and reaching a steady-state velocity, is found to strongly depend on six dimensionless parameters formulated by ML feature selection. The data shows a correlation between the Reynolds and Froude numbers within the range of the experiments, and the best symbolic regression is based on the Froude number only. This experiment provides valuable insights into the behavior of inertial particles in stratified layers and highlights opportunities for future improvement in predicting their motion.

שפה מקוריתאנגלית
מספר המאמר104716
כתב עתInternational Journal of Multiphase Flow
כרך172
מזהי עצם דיגיטלי (DOIs)
סטטוס פרסוםפורסם - פבר׳ 2024

טביעת אצבע

להלן מוצגים תחומי המחקר של הפרסום 'Improved prediction of settling behavior of solid particles through machine learning analysis of experimental retention time data'. יחד הם יוצרים טביעת אצבע ייחודית.

פורמט ציטוט ביבליוגרפי