Improved moth flame optimization algorithm based on opposition-based learning and Lévy flight distribution for parameter estimation of solar module

Abhishek Sharma, Abhinav Sharma, Moshe Averbukh, Shailendra Rajput, Vibhu Jately, Sushabhan Choudhury, Brian Azzopardi

פרסום מחקרי: פרסום בכתב עתמאמרביקורת עמיתים

40 ציטוטים ‏(Scopus)

תקציר

An enhanced version of the moth flame optimization algorithm is proposed in this paper for rapid and precise parameter extraction of solar cells. The proposed OBLVMFO algorithm's novelty lies primarily in the improved search strategies, where two modifications are proposed to maintain a proper balance between exploration and exploitation. Firstly, an opposition-based learning mechanism is employed to initialize the search population for the purpose of enhancing the global search. Secondly, Lévy flight distribution is used to prevent the stagnation of solutions in local minima. The implementation of intelligent rules such as OBL and Lévy flight distribution significantly improves the performance of the standard MFO. The developed OBLVMFO performed adequately and is reliable in terms of RMSE compared to other methodologies such as MFO, ALO, SCA, MRFO, and WOA. The best optimized value of RMSE achieved by OBLVMFO is 6.060E−04, 1.3600E−05, and 7.0001E−06 for STE 4/100 (polycrystalline), LSM 20 (monocrystalline), and SS2018P (polycrystalline) PV modules, respectively. The experiments performed on the benchmark test function revealed that the OBLVMFO has a 61% faster convergence speed than the standard version of MFO, which improves solution accuracy. In addition to this, two non-parametric tests: Friedman ranking and Wilcoxon rank sum are performed for the validation.

שפה מקוריתאנגלית
עמודים (מ-עד)6576-6592
מספר עמודים17
כתב עתEnergy Reports
כרך8
מזהי עצם דיגיטלי (DOIs)
סטטוס פרסוםפורסם - נוב׳ 2022

טביעת אצבע

להלן מוצגים תחומי המחקר של הפרסום 'Improved moth flame optimization algorithm based on opposition-based learning and Lévy flight distribution for parameter estimation of solar module'. יחד הם יוצרים טביעת אצבע ייחודית.

פורמט ציטוט ביבליוגרפי