Hidden in Time, Revealed in Frequency: Spectral Features and Multiresolution Analysis for Encrypted Internet Traffic Classification

פרסום מחקרי: פרק בספר / בדוח / בכנספרסום בספר כנסביקורת עמיתים

תקציר

In recent years, privacy and security concerns have led to the wide adoption of encrypted protocols, making encrypted traffic a major portion of overall communications online. The transition into more secure protocols poses significant challenges for internet service providers to utilize traditional traffic classification techniques in order to guarantee the Quality of Service (QoS), Quality of Experience (QoE), and cyber-security of their customers. In this work, we introduce two methods, namely STFT-TC and DWT-TC, leveraging compact time-series representation coupled with well-known techniques from the field of Digital Signal Processing (DSP): the short-time Fourier transform (STFT) and the discrete wavelet transform (DWT). The STFT-TC method extracts a suite of statistical and spectral features from the magnitude spectrogram, offering a fresh perspective on interpreting and classifying encrypted traffic. The DWT-TC method extracts statistical features from the wavelet coefficients and incorporates unique characteristics that describe the signal's shape and energy distribution. Evaluating our methods on two public QUIC datasets demonstrated improvements in accuracy of up to 5.7%. Similarly, the F1-scores also showed enhancements, with increments of up to 5.9% for the same datasets.

שפה מקוריתאנגלית
כותר פרסום המארח2024 IEEE 21st Consumer Communications and Networking Conference, CCNC 2024
מוציא לאורInstitute of Electrical and Electronics Engineers Inc.
עמודים266-271
מספר עמודים6
מסת"ב (אלקטרוני)9798350304572
מזהי עצם דיגיטלי (DOIs)
סטטוס פרסוםפורסם - 2024
אירוע21st IEEE Consumer Communications and Networking Conference, CCNC 2024 - Las Vegas, ארצות הברית
משך הזמן: 6 ינו׳ 20249 ינו׳ 2024

סדרות פרסומים

שםProceedings - IEEE Consumer Communications and Networking Conference, CCNC
ISSN (מודפס)2331-9860

כנס

כנס21st IEEE Consumer Communications and Networking Conference, CCNC 2024
מדינה/אזורארצות הברית
עירLas Vegas
תקופה6/01/249/01/24

טביעת אצבע

להלן מוצגים תחומי המחקר של הפרסום 'Hidden in Time, Revealed in Frequency: Spectral Features and Multiresolution Analysis for Encrypted Internet Traffic Classification'. יחד הם יוצרים טביעת אצבע ייחודית.

פורמט ציטוט ביבליוגרפי