Hall Conductivity as the Topological Invariant in the Phase Space in the Presence of Interactions and a Nonuniform Magnetic Field

C. X. Zhang, M. A. Zubkov

פרסום מחקרי: פרסום בכתב עתמאמרביקורת עמיתים

18 ציטוטים ‏(Scopus)

תקציר

The quantum Hall conductivity in the presence of constant magnetic field may be represented as the topological TKNN invariant. Recently, the generalization of this expression has been proposed for the nonuniform magnetic field. The quantum Hall conductivity is represented as the topological invariant in phase space in terms of the Wigner transformed two-point Green’s function. This representation has been derived when the interelectron interactions were neglected. It is natural to suppose, that in the presence of interactions the Hall conductivity is still given by the same expression, in which the non-interacting Green’s function is substituted by the complete two-point Green’s function including the interaction contributions. We prove this conjecture within the framework of the 2 + 1 D tight-binding model of rather general type using the ordinary perturbation theory.

שפה מקוריתאנגלית
עמודים (מ-עד)487-494
מספר עמודים8
כתב עתJETP Letters
כרך110
מספר גיליון7
מזהי עצם דיגיטלי (DOIs)
סטטוס פרסוםפורסם - 1 אוק׳ 2019

טביעת אצבע

להלן מוצגים תחומי המחקר של הפרסום 'Hall Conductivity as the Topological Invariant in the Phase Space in the Presence of Interactions and a Nonuniform Magnetic Field'. יחד הם יוצרים טביעת אצבע ייחודית.

פורמט ציטוט ביבליוגרפי