Geometry of hamiltonian chaos

Lawrence Horwitz, Yossi Ben Zion, Meir Lewkowicz, Marcelo Schiffer, Jacob Levitan

פרסום מחקרי: פרסום בכתב עתמאמרביקורת עמיתים

51 ציטוטים ‏(Scopus)

תקציר

The characterization of chaotic Hamiltonian systems in terms of the curvature associated with a Riemannian metric tensor in the structure of the Hamiltonian is extended to a wide class of potential models of standard form through definition of a conformal metric. The geodesic equations reproduce the Hamilton equations of the original potential model when a transition is made to an associated manifold. We find, in this way, a direct geometrical description of the time development of a Hamiltonian potential model. The second covariant derivative of the geodesic deviation in this associated manifold results in (energy dependent) criteria for unstable behavior different from the usual Lyapunov criteria. We discuss some examples of unstable Hamiltonian systems in two dimensions.

שפה מקוריתאנגלית
מספר המאמר234301
כתב עתPhysical Review Letters
כרך98
מספר גיליון23
מזהי עצם דיגיטלי (DOIs)
סטטוס פרסוםפורסם - 4 יוני 2007

טביעת אצבע

להלן מוצגים תחומי המחקר של הפרסום 'Geometry of hamiltonian chaos'. יחד הם יוצרים טביעת אצבע ייחודית.

פורמט ציטוט ביבליוגרפי