Generalized fusible numbers and their ordinals

Alexander I. Bufetov, Gabriel Nivasch, Fedor Pakhomov

פרסום מחקרי: פרסום בכתב עתמאמרביקורת עמיתים

1 ציטוט ‏(Scopus)

תקציר

Erickson defined the fusible numbers as a set F of reals generated by repeated application of the function [Formula presented]. Erickson, Nivasch, and Xu showed that F is well ordered, with order type ε0. They also investigated a recursively defined function M:R→R. They showed that the set of points of discontinuity of M is a subset of F of order type ε0. They also showed that, although M is a total function on R, the fact that the restriction of M to Q is total is not provable in first-order Peano arithmetic PA. In this paper we explore the problem (raised by Friedman) of whether similar approaches can yield well-ordered sets F of larger order types. As Friedman pointed out, Kruskal's tree theorem yields an upper bound of the small Veblen ordinal for the order type of any set generated in a similar way by repeated application of a monotone function g:Rn→R. The most straightforward generalization of [Formula presented] to an n-ary function is the function [Formula presented]. We show that this function generates a set Fn whose order type is just φn−1(0). For this, we develop recursively defined functions Mn:R→R naturally generalizing the function M. Furthermore, we prove that for any linear function g:Rn→R, the order type of the resulting F is at most φn−1(0). Finally, we show that there do exist continuous functions g:Rn→R for which the order types of the resulting sets F approach the small Veblen ordinal.

שפה מקוריתאנגלית
מספר המאמר103355
כתב עתAnnals of Pure and Applied Logic
כרך175
מספר גיליון1
מזהי עצם דיגיטלי (DOIs)
סטטוס פרסוםפורסם - ינו׳ 2024

טביעת אצבע

להלן מוצגים תחומי המחקר של הפרסום 'Generalized fusible numbers and their ordinals'. יחד הם יוצרים טביעת אצבע ייחודית.

פורמט ציטוט ביבליוגרפי