FUSIBLE NUMBERS AND PEANO ARITHMETIC

Jeff Erickson, Gabriel Nivasch, Junyan Xu

פרסום מחקרי: פרסום בכתב עתמאמרביקורת עמיתים

2 ציטוטים ‏(Scopus)

תקציר

Inspired by a mathematical riddle involving fuses, we define the fusible numbers as follows: 0 is fusible, and whenever x, y are fusible with |y−x| < 1, the number (x+y+1)/2 is also fusible. We prove that the set of fusible numbers, ordered by the usual order on R, is well-ordered, with order type ε0. Furthermore, we prove that the density of the fusible numbers along the real line grows at an incredibly fast rate: Letting g(n) be the largest gap between consecutive fusible numbers in the interval [n, ∞), we have g(n)−1 ≥ Fε0 (n − c) for some constant c, where Fα denotes the fast-growing hierarchy. Finally, we derive some true statements that can be formulated but not proven in Peano Arithmetic, of a different flavor than previously known such statements: PA cannot prove the true statement “For every natural number n there exists a smallest fusible number larger than n.” Also, consider the algorithm “M(x): if x < 0 return −x, else return M(x − M(x − 1))/2.” Then M terminates on real inputs, although PA cannot prove the statement “M terminates on all natural inputs.”.

שפה מקוריתאנגלית
עמודים (מ-עד)6:1-6:26
כתב עתLogical Methods in Computer Science
כרך18
מספר גיליון3
מזהי עצם דיגיטלי (DOIs)
סטטוס פרסוםפורסם - 2022

טביעת אצבע

להלן מוצגים תחומי המחקר של הפרסום 'FUSIBLE NUMBERS AND PEANO ARITHMETIC'. יחד הם יוצרים טביעת אצבע ייחודית.

פורמט ציטוט ביבליוגרפי