Families of sets not belonging to algebras and combinatorics of finite sets of ultrafilters

פרסום מחקרי: פרסום בכתב עתמאמרביקורת עמיתים

6 ציטוטים ‏(Scopus)

תקציר

This article is a part of the theory developed by the author in which the following problem is solved under natural assumptions: to find necessary and sufficient conditions under which the union of at most countable family of algebras on a certain set X is equal to (Formula presented.). Here the following new result is proved. Let (Formula presented.) be a finite collection of algebras of sets given on a set X with (Formula presented.), and for each λ there exist at least (Formula presented.) pairwise disjoint sets belonging to (Formula presented.). Then there exists a family (Formula presented.) of pairwise disjoint subsets of (Formula presented.) except the case (Formula presented.); and for each λ the following holds: if (Formula presented.) and Q contains one of the two sets (Formula presented.), and its intersection with the other set is empty, then (Formula presented.).

שפה מקוריתאנגלית
כתב עתJournal of Inequalities and Applications
כרך2015
מספר גיליון1
מזהי עצם דיגיטלי (DOIs)
סטטוס פרסוםפורסם - 1 דצמ׳ 2015

טביעת אצבע

להלן מוצגים תחומי המחקר של הפרסום 'Families of sets not belonging to algebras and combinatorics of finite sets of ultrafilters'. יחד הם יוצרים טביעת אצבע ייחודית.

פורמט ציטוט ביבליוגרפי