Existence of solutions for a higher order Riemann–Liouville fractional differential equation by Mawhin's coincidence degree theory

Alexander Domoshnitsky, Satyam Narayan Srivastava, Seshadev Padhi

פרסום מחקרי: פרסום בכתב עתמאמרביקורת עמיתים

6 ציטוטים ‏(Scopus)

תקציר

In this paper, we investigate the existence of at least one solution to the following higher order Riemann–Liouville fractional differential equation with Riemann–Stieltjes integral boundary condition at resonance: (Formula presented.) by using Mawhin's coincidence degree theory. Here, (Formula presented.) is the standard Riemann–Liouville fractional derivative of order (Formula presented.), and (Formula presented.) is the Riemann–Stieltjes integral of (Formula presented.) with respect to (Formula presented.). Our choice of (Formula presented.) in the boundary condition can be any integer between 0 and (Formula presented.), which supplements many boundary conditions assumed in the literature. Several examples are given to strengthen our result.

שפה מקוריתאנגלית
עמודים (מ-עד)12018-12034
מספר עמודים17
כתב עתMathematical Methods in the Applied Sciences
כרך46
מספר גיליון11
מזהי עצם דיגיטלי (DOIs)
סטטוס פרסוםהתקבל/בדפוס - 2023

טביעת אצבע

להלן מוצגים תחומי המחקר של הפרסום 'Existence of solutions for a higher order Riemann–Liouville fractional differential equation by Mawhin's coincidence degree theory'. יחד הם יוצרים טביעת אצבע ייחודית.

פורמט ציטוט ביבליוגרפי