Evaluations of noncommutative polynomials on algebras: Methods and problems, and the l’vov–kaplansky conjecture)

Alexei Kanel-Belov, Sergey Malev, Louis Rowen, Roman Yavich

פרסום מחקרי: פרסום בכתב עתמאמרביקורת עמיתים

37 ציטוטים ‏(Scopus)

תקציר

Let p be a polynomial in several non-commuting variables with coefficients in a field K of arbitrary characteristic. It has been conjectured that for any n, for p multilinear, the image of p evaluated on the set Mn(K) of n by n matrices is either zero, or the set of scalar matrices, or the set sln(K) of matrices of trace 0, or all of Mn(K). This expository paper describes research on this problem and related areas. We discuss the solution of this conjecture for n = 2 in Section 2, some decisive results for n = 3 in Section 3, and partial information for n ≥ 3 in Section 4, also for non-multilinear polynomials. In addition we consider the case of K not algebraically closed, and polynomials evaluated on other finite dimensional simple algebras (in particular the algebra of the quaternions). This review recollects results and technical material of our previous papers, as well as new results of other researches, and applies them in a new context. This article also explains the role of the Deligne trick, which is related to some nonassociative cases in new situations, underlying our earlier, more straightforward approach. We pose some problems for future generalizations and point out possible generalizations in the present state of art, and in the other hand providing counterexamples showing the boundaries of generalizations.

שפה מקוריתאנגלית
מספר המאמר071
מספר עמודים61
כתב עתSymmetry, Integrability and Geometry: Methods and Applications (SIGMA)
כרך16
מזהי עצם דיגיטלי (DOIs)
סטטוס פרסוםפורסם - 2020

טביעת אצבע

להלן מוצגים תחומי המחקר של הפרסום 'Evaluations of noncommutative polynomials on algebras: Methods and problems, and the l’vov–kaplansky conjecture)'. יחד הם יוצרים טביעת אצבע ייחודית.

פורמט ציטוט ביבליוגרפי