Estimating the probability of meeting a deadline in schedules and plans

Liat Cohen, Solomon Eyal Shimony, Gera Weiss

פרסום מחקרי: פרסום בכתב עתמאמרביקורת עמיתים

2 ציטוטים ‏(Scopus)

תקציר

Given a plan (or schedule) with uncertain task times, we propose a deterministic polynomial (time and memory) algorithm for estimating the probability that it meets a deadline, or, equivalently, that its makespan is less than a given duration. Approximation is needed as it is known that this problem is NP-hard even for sequential plans (sum of random variables). In addition, we show two new complexity results: (1) Counting the number of events that do not cross the deadline is #P-hard; (2) Computing the expected makespan of a hierarchical plan is NP-hard. For the proposed approximation algorithm, we establish formal approximation bounds and show that the time and memory complexities grow polynomially with the required accuracy, the number of nodes in the plan, and with the size of the support of the random variables that represent the durations of the primitive tasks. We examine these approximation bounds empirically and demonstrate, using task networks taken from the literature, how our scheme outperforms sampling techniques and exact computation in terms of accuracy and run-time. As the empirical data shows much better error bounds than guaranteed, we also suggest a method for tightening the bounds in some cases.

שפה מקוריתאנגלית
עמודים (מ-עד)329-355
מספר עמודים27
כתב עתArtificial Intelligence
כרך275
מזהי עצם דיגיטלי (DOIs)
סטטוס פרסוםפורסם - אוק׳ 2019
פורסם באופן חיצוניכן

טביעת אצבע

להלן מוצגים תחומי המחקר של הפרסום 'Estimating the probability of meeting a deadline in schedules and plans'. יחד הם יוצרים טביעת אצבע ייחודית.

פורמט ציטוט ביבליוגרפי