Envy-free matchings in bipartite graphs and their applications to fair-division

פרסום מחקרי: פרק בספר / בדוח / בכנספרסום בספר כנסביקורת עמיתים

תקציר

A matching in a bipartite graph with parts X and Y is called envy-free, if no unmatched vertex in X is a adjacent to a matched vertex in Y. Every perfect matching is envy-free, but envy-free matchings exist even when perfect matchings do not. Weprove that every bipartite graph has a unique partition such that all envy-free matchings are contained in one of the partition sets. Using this structural theorem, we provide a polynomial-time algorithm for finding an envy-free matching of maximum cardinality. For edge-weighted bipartite graphs, we provide a polynomial-time algorithm for finding a maximum-cardinality envy-free matching of minimum total weight. We show how envy-free matchings can be used in various fair division problems with either continuous resources (“cakes”) or discrete ones. In particular, we propose a symmetric algorithm for proportional cake-cutting, an algorithm for 1-out-of-(2n − 2) maximin-share allocation of discrete goods, and an algorithm for 1-out-of-2n/3maximin-share allocation of discrete bads among n agents.
שפה מקוריתאנגלית
כותר פרסום המארחWorkshop of theoretical aspects of fairness, Patras, Greece
עמודים164-187
מספר עמודים36
כרך587
מזהי עצם דיגיטלי (DOIs)
סטטוס פרסוםפורסם - 27 נוב׳ 2021

טביעת אצבע

להלן מוצגים תחומי המחקר של הפרסום 'Envy-free matchings in bipartite graphs and their applications to fair-division'. יחד הם יוצרים טביעת אצבע ייחודית.

פורמט ציטוט ביבליוגרפי