Embedded Unit Cell Homogenization Approach for Fracture Analysis

Marina Grigorovitch, Haim Waisman

פרסום מחקרי: פרסום בכתב עתמאמרביקורת עמיתים

תקציר

We extend the applicability of the embedded unit cell (EUC) method to three-dimensional (3D) fracture problems, which are modeled by the extended finite element method (XFEM). The EUC method is a concurrent multiscale method based on the computational homogenization theory for nonperiodic domains. Herein, we show that this method can accurately estimate fracture parameters and, in particular, stress intensity factors using the J-integral method. Additionally, the method is shown to capture crack propagation within the microscale domain, as well as cracks initiating at the microscale and propagating outwards onto the macroscale through the internal subdomain boundaries. To demonstrate the accuracy, robustness, and computational efficiency of the proposed method, several 3D numerical benchmark examples, including planar cracks with single and mixed-mode fractures, are considered. In particular, we analyze horizontal, inclined, square, and penny-shaped cracks embedded in a homogeneous material. The results are verified against full FEM models and known analytical solutions if available.

שפה מקוריתאנגלית
מספר המאמר04024055
כתב עתJournal of Engineering Mechanics - ASCE
כרך150
מספר גיליון8
מזהי עצם דיגיטלי (DOIs)
סטטוס פרסוםפורסם - 1 אוג׳ 2024

טביעת אצבע

להלן מוצגים תחומי המחקר של הפרסום 'Embedded Unit Cell Homogenization Approach for Fracture Analysis'. יחד הם יוצרים טביעת אצבע ייחודית.

פורמט ציטוט ביבליוגרפי