Effect of interactions on the topological expression for the chiral separation effect

M. A. Zubkov, Ruslan A. Abramchuk

פרסום מחקרי: פרסום בכתב עתמאמרביקורת עמיתים

4 ציטוטים ‏(Scopus)

תקציר

In the absence of interactions the conductivity of the chiral separation effect (CSE) in the system of massless fermions is given by a topological expression; interactions might change the pattern drastically. However, we prove that the CSE conductivity is still given by the topological invariant composed of the Green functions at zero temperature as long as the chiral symmetry is present, and if the renormalized axial current is considered. This allows us to predict its appearance with the standard value of conductivity per the Dirac fermion σCSE=12π2 in quark-gluon matter at T=0 and sufficiently large baryon chemical potential, in the hypothetical phase with restored chiral symmetry and without color superconductivity. This phase may be realized inside the neutron stars. We also argue that the same topological expression for the CSE may be observed in Weyl semimetals, which realize the system of interacting relativistic fermions in solid state systems. In order to estimate the nonperturbative corrections to σCSE within QCD at finite temperatures we apply the method of field correlators developed by Yu. A. Simonov. As expected, above the deconfinement crossover, the topological expression is approached within the quark-gluon plasma phase, when the quark chemical potential is sufficiently large. However, we observe that this occurs only when quark chemical potential is much larger than the thermal (Debye) mass. This range of parameters appears to be far out of the region accessible at the modern colliders.

שפה מקוריתאנגלית
מספר המאמר094021
כתב עתPhysical Review D
כרך107
מספר גיליון9
מזהי עצם דיגיטלי (DOIs)
סטטוס פרסוםפורסם - 1 מאי 2023

טביעת אצבע

להלן מוצגים תחומי המחקר של הפרסום 'Effect of interactions on the topological expression for the chiral separation effect'. יחד הם יוצרים טביעת אצבע ייחודית.

פורמט ציטוט ביבליוגרפי