Detection of Static and Mobile Targets by an Autonomous Agent with Deep Q-Learning Abilities.

Barouch Matzliach, Irad Ben-Gal, Evgeny Kagan

פרסום מחקרי: פרסום בכתב עתמאמרביקורת עמיתים

6 ציטוטים ‏(Scopus)

תקציר

This paper addresses the problem of detecting multiple static and mobile targets by an autonomous mobile agent acting under uncertainty. It is assumed that the agent is able to detect targets at different distances and that the detection includes errors of the first and second types. The goal of the agent is to plan and follow a trajectory that results in the detection of the targets in a minimal time. The suggested solution implements the approach of deep Q-learning applied to maximize the cumulative information gain regarding the targets’ locations and minimize the trajectory length on the map with a predefined detection probability. The Q-learning process is based on a neural network that receives the agent location and current probability map and results in the preferred move of the agent. The presented procedure is compared with the previously developed techniques of sequential decision making, and it is demonstrated that the suggested novel algorithm strongly outperforms the existing methods.

שפה מקוריתאנגלית
מספר המאמר8
עמודים (מ-עד)1168
מספר עמודים1
כתב עתEntropy
כרך24
מספר גיליון8
מזהי עצם דיגיטלי (DOIs)
סטטוס פרסוםפורסם - 2022

טביעת אצבע

להלן מוצגים תחומי המחקר של הפרסום 'Detection of Static and Mobile Targets by an Autonomous Agent with Deep Q-Learning Abilities.'. יחד הם יוצרים טביעת אצבע ייחודית.

פורמט ציטוט ביבליוגרפי